Holiday
Nanda南大N202 S1S2S3
本門課程為三位老師共同合開。此部分為其中的六週課程。課程主要目標是介紹數學在STEM教育扮演的角色為何,以及在 STEM 課程中,培養學生對應的數學關鍵能力。另外,將介紹STEM課程的DDMT模式中,如何有機會發展學生跨領域知識,以及其應 用 其解決複雜生活脈絡問題的重要能力。 課程重點包括: 1.STEAM實驗教育的歷史背景與其設定的教育目標 2.STEAM實驗教育中,科學、科技、工程、藝術、數學的整合,以及數學扮演的角色為何 3.STEAM以數學為本的課程設計原則 4.STEM以數學為本的實徵研究結果
Course keywords: STEM education, mathematics, 主題一:STEAM實驗教育的歷史背景 我們將介紹STEAM實驗教育的歷史源由、社會需求、以及國家教育政策的制訂與推行。STEAM背後教 育理念 與學習的哲學觀將做一討論。我們也將舉例說明不同國家如何落實STEAM實驗教育,以及如何整合 STEAM實 驗教育與既有的學校教育方式。 主題二:STEAM實驗教育的跨領域整合的意義以及數學所扮演的角色 STEAM實驗教育的中心思想是如何發展跨領域知識,以解決各種複雜的現實情境問題。目標是培養學 生問 題解決、探究和設計思考的能力。在這樣的中心理念下,我們將介紹清華大學STEAM學校的DDMT模 式,以 及這個模式如何發展學生科學、科技、工程、藝術、及數學的跨領域知識。另,我們也將深入討論 數學在 STEAM教育應該扮演的角色為何,以及如何在STEAM實驗教育中落實數學教育。 主題三:STEAM實驗以數學為本的課程設計 在設計研究法(design research)的思維下,我們將討論STEAM實驗課程設計原則為何。除了巨觀 的DDMT 課程設計模式之外,有哪些微觀原則可以落實STEAM的跨領域知識培養。 主題五:STEM以數學為本的教學實徵研究結果 STEAM實驗教育的落實需要教師更強的教學能力。本主題將從文獻資料中,探討STEAM實驗教育執行 時,教 師需要具備那些教學力,並且能依循STEAM實驗教育的學習哲學觀,確實幫助學生發展跨領域知識與 解決 問題的專業素養。同時呈現以數學為本的STEM教學之下,學生的學習成果。 上課方式: 課堂進行方式以討論與實作為主。 評量方式 (本門課總成績的1/3),其中 一、課堂參與(30%):課堂參與包括上課時的討論、文獻分派工作的完成、文獻內容的理解、實作參 與。 二、出缺席(30%):準時出席、上課是對老師和其他學生相互的尊重。缺席將嚴重影響本門課程的 成績。 三、實做報告(40%):實做報告主題必須與本門課程相關,細節將於課堂上進一步討論。 參考文獻 Berland, L. K. (2014). Designing for STEM integration. Journal of Pre-College Engineering Education Research (J-PEER), 3. Beth, B., Lucy, W., Marcelina, C., & Ryan, O. D. (2014). Learning mathematics through Minecraft. Teaching Children Mathematics, 21(1), 56-59. doi:10.5951/teacchilmath.21.1.0056 Bicer, A., Navruz, B., Capraro, R. M., & Capraro, M. M. (2014). STEM schools vs. Non-STEM schools: Comparing students mathematics state based test performance. International Journal of Global Education, 3(3), 8-18. Blackley, S., & Howell, J. (2015). A STEM Narrative: 15 Years in the Making. Australian Journal of Teacher Education, 40(7), 102-112. Bybee, R. W. (2010). Advancing STEM education: A 2020 version. Technology and Engineering teacher, 70(1), 30-35. Retrieved from https://search.proquest.com/docview/853062675?accountid=14427 Chalmers, C., Carter, M., Cooper, T., & Nason, R. (2017). Implementing “Big Ideas” to Advance the Teaching and Learning of Science, Technology, Engineering, and Mathematics (STEM). International Journal of Science and Mathematics Education, 15(1), 25-43. doi:10.1007/s10763-017-9799-1 Chu, S. L., Quek, F., Bhangaonkar, S., Ging, A. B., & Sridharamurthy, K. (2015). Making the Maker: A Means-to-an-Ends approach to nurturing the Maker mindset in elementary-aged children. International Journal of Child-Computer Interaction, 5, 11-19. doi:https://doi.org/10.1016/j.ijcci.2015.08.002 Diaz, D., & King, P. (2007). Adapting a post-secondary STEM instructional model to K-5 mathematics instruction. Honolulu, HI: Proceedings of the American Society for Engineering Education Annual Conference and Exposition. English, L. D. (2015). STEM: Challenges and Opportunities for Mathematics Education. In K. Beswick, T. Muir, & J. Wells (Eds.), Proceedings of the 39th Conference of the International Group for the Psychology of Mathematics Education. Hobart, Australia: PME. English, L. D. (2016). STEM education K-12: perspectives on integration. International Journal of STEM Education, 3(1), 3. doi:10.1186/s40594-016-0036-1 English, L. D. (2017). Advancing Elementary and Middle School STEM Education. International Journal of Science and Mathematics Education, 15(1), 5-24. doi:10.1007/s10763-017-9802-x English, L. D., & King, D. T. (2015). STEM learning through engineering design: fourth-grade students’ investigations in aerospace. International Journal of STEM Education, 2(1), 14. doi:10.1186/s40594-015-0027-7 Gonzalez, H. B., & Kuenzi, J. J. (2012). Science, technology, engineering, and mathematics (STEM) education: A primer. Kuenzi, J. J. (2008). Science, technology, engineering, and mathematics (STEM) education: Background, federal policy, and legislative action (CRS report for Congress). Moore, T. J., & Smith, K. A. (2014). Advancing the state of the art of STEM integration. Journal of STEM Education, 15(1), 5-10. Moore, T. J., Stohlmann, M. S., Wang, H., Tank, K. M., Glancy, A. W., & Roehrig, G. H. (2014). Implementation and integration of engineering in K-12 STEM education. In S. Purzer, J. Strobel, & M. Cardella (Eds.), Engineering in Pre-college settings: research into practice. West Lafayette, Indiana: Purdue University Press. Pitt, J. (2009). Blurring the Boundaries-STEM Education and Education for sustainable development. Design and Technology Education, 14(1), 37-48. Sanders, M. (2009). STEM, STEM Education, STEMmania. The Technology Teacher, December/January, 20-26. Stohlmann, M., Moore, T. J., & Roehrig, G. H. (2012). Considerations for teaching integrated STEM. Journal of Pre-College Engineering Education Research (J-PEER), 2. Williams, J. (2011). STEM Education: Proceed with caution. Design and Technology Education, 16(1), 26-35.
MON | TUE | WED | THU | FRI | SAT | |
08:00108:50 | ||||||
09:00209:50 | ||||||
10:10311:00 | ||||||
11:10412:00 | ||||||
12:10n13:00 | ||||||
13:20514:10 | ||||||
14:20615:10 | ||||||
15:30716:20 | ||||||
16:30817:20 | ||||||
17:30918:20 | ||||||
18:30a19:20 | ||||||
19:30b20:20 | ||||||
20:30c21:20 |
Average Percentage 87.47
Std. Deviation 2.12
限專班
-
-
-
-